Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions.
نویسندگان
چکیده
An aerobic succinate production system developed by Lin et al. (Metab Eng, in press) is capable of achieving the maximum theoretical succinate yield of 1.0 mol/mol glucose for aerobic conditions. It also exhibits high succinate productivity. This succinate production system is a mutant E. coli strain with five pathways inactivated: DeltasdhAB, Delta(ackA-pta), DeltapoxB, DeltaiclR, and DeltaptsG. The mutant strain also overexpresses Sorghum vulgare pepc. This mutant strain is designated HL27659k(pKK313). Fed-batch reactor experiments were performed for the strain HL27659k(pKK313) under aerobic conditions to determine and demonstrate its capacity for high-level succinate production. Results showed that it could produce 58.3 g/l of succinate in 59 h under complete aerobic conditions. Throughout the entire fermentation the average succinate yield was 0.94+/-0.07 mol/mol glucose, the average productivity was 1.08+/-0.06 g/l-h, and the average specific productivity was 89.77+/-3.40 mg/g-h. Strain HL27659k (pKK313) is, thus, capable of large-scale succinate production under aerobic conditions. The results also showed that the aerobic succinate production system using the designed strain HL27659k(pKK313) is more practical than conventional anaerobic succinate production systems. It has remarkable potential for industrial-scale succinate production and process optimization.
منابع مشابه
Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.
For the first time, glyoxylate pathway in the biosynthesis of succinate was activated without the genetic manipulations of any gene related with glyoxylate pathway. Furthermore, the inactivation of succinate biosynthesis by-products genes encoding acetate kinase (ackA) and phosphotransacetylase (pta) was proven to be the key factor to activate glyoxylate pathway in the metabolically engineered ...
متن کاملEfficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli.
Polylactic acid (PLA) is one of the promising biodegradable polymers, which has been produced in a rather complicated two-step process by first producing lactic acid by fermentation followed by ring opening polymerization of lactide, a cyclic dimer of lactic acid. Recently, we reported the production of PLA and its copolymers by direct fermentation of metabolically engineered Escherichia coli e...
متن کاملGlycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum
Corynebacterium glutamicum, an established microbial cell factory for the biotechnological production of amino acids, was recently genetically engineered for aerobic succinate production from glucose in minimal medium. In this work, the corresponding strains were transformed with plasmid pVWEx1-glpFKD coding for glycerol utilization genes from Escherichia coli. This plasmid had previously been ...
متن کاملFermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain elimin...
متن کاملEliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli
BACKGROUND Citramalate, a chemical precursor to the industrially important methacrylic acid (MAA), can be synthesized using Escherichia coli overexpressing citramalate synthase (cimA gene). Deletion of gltA encoding citrate synthase and leuC encoding 3-isopropylmalate dehydratase were critical to achieving high citramalate yields. Acetate is an undesirable by-product potentially formed from pyr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2005